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de Janeiro 21941-909, Brazil. Correspondence e-mail: jgeon@iq.ufrj.br

Non-crystallographic (NC) nets are defined as periodic nets whose auto-

morphism groups are not isomorphic to any isometry group in Euclidean space.

This work focuses on a simple class of NC nets, restricted to nets with non-

abelian, freely acting local automorphism groups. A general method is presented

to derive such NC nets from crystallographic nets and some non-trivial examples

are explored. It is shown that the labelled quotient graph of these nets does not

necessarily possess non-trivial automorphisms which exchange cycles having the

same net voltage. However, barycentric representations of these nets system-

atically display vertex collisions.

1. Introduction

Periodic nets may be used to represent the topology of crystal

structures (Wells, 1977; O’Keeffe & Hyde, 1980). Additionally,

the space group of the crystal is isomorphic to a subgroup

of the automorphism group of the associated net. p-Periodic

nets whose automorphism group is isomorphic to some

p-dimensional space group are called crystallographic nets

(Klee, 2004). Here, we define a non-crystallographic net as a

periodic net whose automorphism group is not isomorphic to

any isometry group in Euclidean space (of any dimension). It

may be noticed that the topology of many ideal crystal

structures is represented by a crystallographic net, although

no physical reason has ever been invoked to explain

this observation. As a matter of fact, examples of non-

crystallographic (NC) nets are still quite rare (Chung et al.,

1984; Delgado-Friedrichs, 2005).

Periodic nets are infinite graphs, so their labelled quotient

graphs, which are finite graphs, are more convenient to handle

(Chung et al., 1984). In particular, generation of p-periodic

nets can be done routinely by assigning different vector labels

from the translation group Zp to the edges of any finite graph

with at least p independent cycles (Bader et al., 1997).

Although the net is uniquely determined by its labelled

quotient graph, it is by no means clear whether one can

determine the whole automorphism group of the net from the

sole examination of its labelled quotient graph. Let us

consider an example.

The 2-periodic net N drawn in Fig. 1(a) admits the auto-

morphism ’N ¼ ðB00;C00Þ which exchanges the two vertices

B00 and C00 and fixes every other vertex. It is a kind of

reflection symmetry which acts locally, on a single unit cell.

This 2-periodic net is thus an NC net. Now, on examining its

labelled quotient graph G in Fig. 1(b), one can see that there is

an automorphism, say �G, which exchanges the two vertices B

and C as well as the edges AB and AC with the same vector

labels. However, �G induces the automorphism of the net

which exchanges every pair of vertices Bij and Cij, while fixing

vertex lattice A; this automorphism is readily seen to commute

with the translation group of the net. However, the existence

of ’N is not implied by that of �G.

The existence in a labelled quotient graph of non-trivial

automorphisms which exchange cycles having the same net

voltage (i.e. the same sum of vector labels over their edges

Figure 1
(a) A 2-periodic net and (b) its labelled quotient graph with voltages in
Z

2.
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following the orientation of the cycle) may nonetheless reveal

the non-crystallographic nature of the derived net (Eon,

2005). One of the objectives of this paper is to display an

infinite family of NC nets whose labelled quotient graph does

not even possess such automorphisms.

Why should we study NC nets? Clearly, in a systematic

derivation of nets performed by assigning every possible

vector label in Zp to the edges of some finite graph, it should

be of great help to be able to tell apart crystallographic nets

from NC nets by direct examination of their quotient. Besides,

crystals whose topology is represented by an NC net might

well exhibit unforeseen properties owing to some flexibility in

the structure. For instance, profiting by the 2-periodic net in

Fig. 1, one may fancy applying to information storage any

compound which realizes this topology, where each unit cell

provides one bit. In other words, the search and synthesis of

such materials might become in itself a (challenging) goal to

the chemist.

In this paper, we study specifically NC nets with non-

abelian, freely acting local automorphism groups. We show

how to construct an infinite family of NC nets such that their

quotient graphs admit no automorphisms that exchange cycles

having the same net voltage. But we also show that any

barycentric representation of these nets displays collisions.

x2 gives a short account of the principal mathematical tools

from graph and group theory that are needed to follow the

paper. The fundamental results of this work are stated in x3,

where it will be shown in particular that any barycentric

representation of an NC net with non-abelian, freely acting

local automorphism group admits vertex collisions. x4 presents

a general two-step procedure to generate an infinite family of

such nets. This procedure and non-trivial examples are

explored in xx5–7. It is shown that the local automorphism

group may be inserted in a direct productH� Zn whereH is a

finite non-abelian group. x8 generalizes this result and

develops a direct (one-step) method for generating NC nets

from crystallographic ones.

2. Mathematical tools

Most of the following definitions are in accordance with

Harary (1972). A graph G ¼ ðV;E;mÞ is a pair of vertex set V

and edge set E with an incidence mapping m : E�!V2. If

mðeÞ ¼ ðA;BÞ, we use the notation e ¼ AB and say that e runs

from the source A to the end B. Although this definition does

not apply to loops, it is easily extended to cover this case (Eon,

2011). The edge space of G is formally defined as the vector

space on R admitting the edges of G as basis vectors. A co-

boundary of a subset U of vertices is defined (Harary, 1972) as

the combination of edges joining the vertices of U to the

vertices that are not in U. The co-cycle space is defined as the

subspace of the edge space containing all the linear combi-

nations of co-boundaries; this space may be generated by the

set of co-boundaries of single vertices. A cycle of G is a

combination of edges inducing a connected subgraph of

degree 2. The cycle space is the subspace of the edge space

containing all the linear combinations of cycles. The cyclo-

matic number of the graph is the dimension of its cycle space

and is given by c ¼ jEj � jVj þ 1 where jEj and jVj are the

cardinality of the edge and vertex set, respectively. It is known

that the edge space is the direct sum of the cycle and co-cycle

spaces of the graph (Godsil & Royle, 2004).

An automorphism of G is a pair (fV; fE) of bijective

mappings of V and E on themselves respecting the incidence

mapping: fEðeÞ ¼ fVðAÞfVðBÞ for e ¼ AB. It is a local auto-

morphism if the distance between any vertex and its image by

f is uniformly bounded by some constant. An automorphism f

is said to act freely on G if there is no fixed element, that is:

f ðXÞ 6¼ X for every X 2 V [ E. The automorphism group of

N is denoted AutðNÞ.

A net is a simple 3-connected graph which is locally finite

(i.e. vertex degrees are finite). 3-Connectedness is not so

restrictive a condition as it might seem. For instance, the

topology of some crystal structures with 2-coordinated atoms

such as oxygen in zeolites is strictly represented by a

2-connected graph. By convention, the graph is then

contracted, that is: every link A–O–B where O has degree 2 is

substituted by a single edge AB. The resulting graph is

3-connected and no topological information has been lost. We

say that the pair (N;T) is a p-periodic net if N is a net and

T � AutðNÞ is a free abelian group of rank p, such that the

number of vertex and edge orbits by T in N is finite. T is called

the translation group of (N;T) and acts freely on the net N.

Crystallographic nets are p-periodic nets whose automorphism

group is isomorphic to some p-dimensional space group (Klee,

2004). We shall say that a periodic net is non-crystallographic

if its automorphism group is not isomorphic to any isometry

group in Euclidean space. In particular, the automorphism

group of an NC net cannot be isomorphic to a subperiodic

(layer or rod) group. If (N;T) is a periodic net, we denote,

respectively, by V=T and E=T the sets of vertex and edge

orbits (or lattices) of N by T, and qT the mapping which sends

an element (vertex or edge) X to its orbit [X]. The quotient

graph is the graph N=T � ðV=T;E=T;mTÞ, where mT is given

by mTð½e�Þ ¼ ð½A�; ½B�Þ for an edge e ¼ AB 2 E. The mapping

qT is called the natural projection of (N;T) to its quotient

graph N=T. If an origin A0 is chosen in every vertex lattice [A]

of the net and every vertex indexed by the translation t which

maps to it the origin of the respective lattice, one may assign to

every edge ½e� ¼ ½A�½B� of the quotient graph the index t of the

edge A0Bt 2 ½e�. The correspondence between the periodic net

and the labelled quotient graph is one-to-one, up to the choice

of lattice basis and origins. For example, the square net, pcu, is

a 2-periodic net with one vertex and two translationally non-

equivalent edges per unit cell. Since every edge joins two

vertices from the same vertex lattice, the quotient graph of pcu

by its translation group is the graph with one vertex and two

loops at this vertex, called the bouquet B2. Because any edge

of pcu links a vertex U to the translated vertex t(U), where t is

the translation 01 or 10, we assign one of these translations to

each loop of B2. With this assignment, B2 unequivocally

represents the square net.

Labelled quotient graphs are a special case of voltage

graphs. Following Gross & Tucker (2001), a voltage graph
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(G; �) is given by a graph G with an orientation and an

assignment � : E!A from the edge set of G to an arbitrary,

possibly non-abelian group A such that �ðeÞ�ð�eÞ ¼ 1, where

1 is the identity of the group. The net voltage on an oriented

walk w ¼ e1e2 . . . en is the product of the voltages along the

oriented edges of w in the same order: �ðe1Þ�ðe2Þ . . .�ðenÞ.

From any voltage graph, one generates a unique graph, called

the derived graph G�. The derived graph is an oriented graph

with vertex set V �A, edge set E�A and incidence relation

ðe; aÞ ¼ ðu; aÞðv; abÞ for any a 2 A if e ¼ uv has voltage b. We

often use the shorthand notation ðu; aÞ ¼ ua so that the inci-

dence relationship reads ea ¼ uavab. G is called the base graph

of G�. The group A acts freely on the derived graph G� if the

action of f 2 A on the vertex (or edge) xa 2 G� is given by

f ðxaÞ ¼ xfa. This property ensures that the natural projection

mapping xa 2 G� to x 2 G is a covering projection [i.e. for

every vertex, the set of outgoing (respectively, ingoing) edges

is mapped one-to-one to the set of outgoing (respectively,

ingoing) edges at its image]. Notice the left action of f on the

voltage a in the definition of the automorphism compared to

the right action of the voltage b in the definition of the inci-

dence mapping. As a simple example of a voltage graph, we

may take the bouquet B2 with vertex U where the two loops l

and l0 are now assigned voltages 0 and 1, respectively, in Z=3Z

(the additive group f0; 1; 2g satisfying 1 + 2 = 0). The derived

graph thus has three vertices Ui, i 2 Z=3Z and six edges li and

l0i, i 2 Z=3Z. Edge li runs from Ui to Uiþ0 ¼ Ui and is thus a

loop at Ui; edge l0i runs from Ui to Uiþ1 so that the three edges

derived from the loop l0 form a triangle.

Definitions and properties of geodesic paths and fibres can

be found in Eon (2007). We just mention that a geodesic fibre

in a periodic net is a minimal 1-periodic subgraph containing

all geodesic (i.e. shortest) paths in the net between any pair of

its vertices. Geodesic fibres are topological invariants whose

main property is that local automorphisms in periodic nets

(N;T) map fibres onto parallel fibres. Only the special case of

strong geodesic lines, or strong geodesics, is needed in this

work: a strong geodesic in a periodic net is defined as a two-

way infinite path which contains the unique geodesic path in

the net between any pair of its vertices. A strong geodesic in

the periodic net (N;T) projects onto a shortest cycle of the

quotient graph N=T and is mapped on a parallel strong

geodesic by any local automorphism.

A linear representation � of a graph in Euclidean space is a

mapping of vertices and edges to points and line segments,

respectively, such that �ðeÞ ¼ �ðuÞ�ðvÞ for e ¼ uv. A repre-

sentation presents vertex collision if different vertices are

mapped on the same Euclidean point. A barycentric repre-

sentation of a periodic net is a periodic, linear representation

of the net where every point is located at the centre of gravity

of its first neighbours. For a labelled quotient graph with

voltages in Zp and a lattice basis Bp of Rp, there is a unique

barycentric representation of the derived net with the given

lattice, up to translation (Delgado-Friedrichs, 2005). Let m and

n be, respectively, the number of edges and vertices of the

quotient N=T of a p-periodic net (N;T). Let (ei) be the m� 1

matrix associated with the basis of the edge space of N=T,

and let (Ci) be the m� 1 matrix associated with the cycle–

co-cycle basis, where the sets fCi : 1 � i � m� nþ 1g and

fCi : m� nþ 1< i � mg form, respectively, a basis of the

cycle space and a basis of the co-cycle space of N=T. Let

[�ðCiÞ] be the m� p voltage matrix associated with its cycle–

co-cycle basis: the first m� nþ 1 rows of [�ðCiÞ] give the net

voltages on the cycles in the cycle basis of N=T, and the

remaining n� 1 rows, which give the projection of the co-cycle

basis, are the zero vector for a barycentric representation. If K

is the m�m matrix whose rows give the expression of the

cycle and co-cycle basis vectors with relation to the edge

vectors, then ðCiÞ ¼ KðeiÞ, or ðeiÞ ¼ K�1
ðCiÞ and the edges of

N=T are mapped in the barycentric representation (Eon,

2011) to the rows of the matrix

½�ðeiÞ� ¼ K�1
½�ðCiÞ�: ð1Þ

3. Freely acting local automorphism groups

The objective of this section is to show that any barycentric

representation of an NC net which admits a non-abelian,

freely acting local automorphism group presents vertex colli-

sions. Observe that this would be more easily proved if we

could find, for every automorphism of the net, a representative

automorphism acting on its quotient graph. Let (N;T) be a

periodic net with translation group T, and let L be the local

automorphism group of the net. In general, a local auto-

morphism ’ of (N;T), not contained in T, does not respect the

vertex and edge lattices of (N;T). This implies that it is not

possible to define a consistent action, induced by ’, on the

quotient graph N=T. But we might circumvent the difficulty by

working with a special subgroup S of T that commutes with ’;

S should then belong to the centre of L. We show here that

such a subgroup of T does exist and that it has finite index in L

and T.

Lemma 3.1. Suppose that L, the local automorphism group of

the periodic net (N;T), acts freely on the net. Let ’ 2 L and

t 2 T; then there exists a translation in hti which commutes

with ’.

Proof. Denote by j’j the maximum distance in N between a

vertex and its image by ’. Consider an arbitrary vertex V of N

and the set of images fVn ¼ t�n’t nðVÞ : n 2 Ng. We have then

dðV;VnÞ ¼ d½t nðVÞ; ’t nðVÞ� � j’j. Since the net is locally

finite, Vm ¼ Vn for at least two different integers m and n. Let

p ¼ m� n> 0; then t p’ðVÞ ¼ ’t pðVÞ and since the only local

automorphism with a fixed vertex is the identity, we conclude

that t p’ ¼ ’t p. &

Theorem 3.1. If the local automorphism group L of a periodic

net (N;T) acts freely on the net, then L is finitely generated

and its centre contains a subgroup S � T of finite index in L.

Proof. Since L acts freely on the net, it is possible to define

the quotient graphs GT ¼ N=T and GL ¼ N=L together with

the respective quotient maps qT and qL (see Fig. 2). Notice
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that GL is finite, since T � L. Let � and � be voltage assign-

ments for GL and GT in L and T, respectively, such that the

derived graphs G�
L and G�

T are isomorphic to N. [According to

Gross & Tucker (2001), such assignments always exist.] That L

is finitely generated is readily seen, since N is connected and

the voltages of GL form a set of generators. Since both L and

T are finitely generated, we may apply Lemma 3.1 to every

pair of generators ð�; tÞ 2 L� T and hence find a subgroup

S � T of finite index in T which commutes with any local

automorphism of N, and so belongs to the centre of L. &

Note that N=S is a finite graph since S has finite index in T.

Fig. 2 depicts the whole set of relations between the net and its

three quotients, i.e. the natural projection qS of the net to its

quotient N=S and the covering projections �TL, �SL and �ST .

For instance, we define �TL, the projection from GT to GL, by

�TL½qTðxÞ� ¼ qLðxÞ, for x 2 N. With these definitions, the

diagram shown in Fig. 2 is commutative.

We can now prove the result that was anticipated at the

beginning of this section.

Corollary 3.1. If the local automorphism group L of a periodic

net (N;T) is non-abelian and acts freely on the net, then any

barycentric representation of the net presents collisions.

Proof. According to Delgado-Friedrichs (2005), a local

automorphism ’ 2 L is a periodic automorphism of the

periodic net (N; S) since it commutes with any translation of S.

Hence, following Corollary 9 of this reference, ’ acts as a

translation on any barycentric representation of (N; S). But

clearly, for a given origin and lattice basis, (N; S) and (N;T)

admit the same barycentric representation. If L is non-abelian,

we can find two local automorphisms ’ and  and a vertex U

in the net such that ’ ðUÞ 6¼  ’ðUÞ. However, ’ and  act

as (commuting) translations on the barycentric representa-

tion of the net, so that the two vertices ’ ðUÞ and  ’ðUÞ
are represented by the same Euclidean point. In other

words, any barycentric representation of the net shows

vertex collisions. &

More generally, the whole local automorphism group L acts

as a translation group T on any barycentric representation of

the net N. As a consequence, there is a graph homomorphism

from the quotient N=L onto the quotient �ðNÞ=T of the

barycentric representation �ðNÞ by T .

4. Generation of NC nets

This section describes a procedure for generating NC nets with

non-abelian, freely acting local automorphism groups. The key

is the construction of the voltage graph N=S. Because any

automorphism ’ 2 L commutes with S, it preserves vertex and

edge lattices by S as well as incidence relationships between

them; hence it induces an automorphism of N=S (the graph of

the lattices). Because ’ is a local automorphism of N, the

induced automorphism of N=S maps cycles to cycles having

the same net voltage (Eon, 2005). The group H of these

automorphisms induced in N=S should also act freely on N=S

and be non-abelian. It is clear from Fig. 2 that the quotient of

N=S by H is isomorphic to the quotient N=L. This means that

we may derive N=S from N=L by voltage assignment inH. We

thus start our procedure with a finite graph P to which we

assign as voltages the elements of a set of generators of a finite,

non-abelian group H. We know then that H acts freely on the

derived graph D (Gross & Tucker, 2001). It remains to assign

voltages in Zn to D in such a way that cycles which are in the

same orbit byH obtain the same net voltage. A periodic net N

may then be derived, which admits a non-trivial local auto-

morphism group L.

The next section details every step of the construction

applied to a simple example. We analyse the properties of the

net and those of its local automorphism group L. In particular,

we determine its maximal translation groups T, together with

the respective labelled quotient graphs N=T. We find the

quotient N=L, write it as a voltage graph with assignments in L

and analyse the relation with the barycentric representation of

the net.

5. The graph B2 with voltages (1,2) and (1,2,3) in S3

We consider here the simplest possible case, when the base

graph P is the bouquet B2 assigning as voltages to the loops

the transposition (1; 2) and the cyclic permutation (1; 2; 3),

taken as generators of S3, the group of the permutations of the

three elements in the set f1; 2; 3g. For the sake of simplifica-

tion, we shall write 12 and 123 instead of using the full cyclic

notations (1; 2) and (1; 2; 3), respectively. The base graph and

its derived graph D are shown in Fig. 3, where the labels of

vertices and edges of D were obtained as explained in x2. The

voltage group has order six and the base graph contains one

vertex and two edges; hence the derived graph contains

6� 1 ¼ 6 vertices and 6� 2 ¼ 12 edges. As in the base graph,

each vertex Up of the derived graph is the source of two edges

ap and bp for p 2 S3 (and the end point of two edges). For

instance, edge a12 runs from vertex U12 to vertex U12:12 ¼ Ue

and edge b12 runs from vertex U12 to vertex U12:123 ¼ U23

(permutations in a product are applied from right to left).

We know that the voltage group S3 acts freely on the

derived graph D. To avoid confusion, let us call H the

subgroup of Aut(D) that is isomorphic to S3. Let us denote by

�p the automorphism of D in correspondence with p 2 S3. The

action of the two generators �12 and �123 of H is given by the
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following permutations of the elements xp (vertices or edges)

of D:

�12 ¼ ðxe; x12Þðx13; x132Þðx123; x23Þ; ð2Þ

�123 ¼ ðxe; x123; x132Þðx13; x23; x12Þ: ð3Þ

[Remember the left action of the voltage. For instance:

�12ðx13Þ ¼ x12:13 ¼ x132.]

We look now for possible voltages on D in order to generate

a periodic net N. These voltages are chosen in a translation

group in such a way that every automorphism of H sends

cycles to cycles of the same net voltage. D has cyclomatic

number 7; we may choose as independent cycles for a cycle

basis the three 2-cycles, the internal 3-cycle and the three

4-cycles limiting the regions of the plane in Fig. 3, all with

clockwise orientation. It is apparent that the three 2-cycles are

equivalent byH and so must obtain the same net voltage, as is

also the case for the three 4-cycles. The internal and external

3-cycles are also exchanged by �12, but with reversal of their

orientation. Let us call �ðCnÞ the net voltage on the n-cycle

(n ¼ 2; 3; 4) in the cycle basis; the net voltage on the external

3-cycle must then be ��ðC3Þ. On the other hand, the external

3-cycle is the sum of all the cycles of the basis, which gives then

the following relation between net voltages:

3�ðC2Þ þ 3�ðC4Þ þ �ðC3Þ ¼ ��ðC3Þ: ð4Þ

Because of the existence of this relation between the net

voltages of the three (remaining) independent cycles, the

periodicity of the derived net will be at most 2. This equation

may be parameterized as�
�ðC3Þ ¼ �3t;
�ðC2Þ þ �ðC4Þ ¼ 2t:

ð5Þ

A possible choice of voltage assignment, corresponding to

t ¼ 10 and �ðC2Þ ¼ 01, is shown in Fig. 4. In fact, any other

assignment such that �ðC2Þ and �ðC4Þ are linearly independent

generates an isomorphic 2-periodic net.

Owing to a great number of crossings, representations of

NC nets may be highly confusing. The representation of the

2-periodic net N derived from D, which is displayed in Fig. 5,

has been drawn as a distortion of a barycentric representation

of the net; for the sake of clarity, and quite informally, we shall

refer to such a representation as a pseudo-barycentric repre-

sentation. Using edge labels shown in Fig. 4, seven cycles were

chosen to form the basis of the cycle space: (1,8,5,4),

(2,3,10,11), (2,4), (6,8), (10,12), (3,9,5) and (1,7,11). Five co-
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Figure 4
The graph D of x5 with voltages in Z

2. Edge labels are given in
parentheses.

Figure 3
The base graph P of x5 and the derived graph D.

Figure 5
A representation of the NC net derived from the voltage graph given in
Fig. 4. Vertices that collide in barycentric representations of the net have
been segregated within black circles and form two classes: fA;B;Cg and
fD;E;Fg.



cycles were chosen to form the basis of the co-cycle space:

(1,2,�4,�11), (7,8,�1,�6), (11,12,�7,�10), (3,4,�2,�5) and

(5,6,�8,�9). The matrices associated with the cycle–co-cycle

basis K, and the lines in any barycentric representation are,

respectively,

K ¼

0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0 0 1 1 0

1 0 0 1 1 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 1 0

1 1 0 1 0 0 0 0 0 0 1 0

1 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 0 0 1 1 1

0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 1 1 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; ð6Þ

½�ðeiÞ� ¼ K�1

0 1

0 1

0 1

2 1

2 1

3 0

3 0

0 0

0 0

0 0

0 0

0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

¼

1 0

0 0:5
1 0

0 0:5
1 0

0 0:5
1 0

0 0:5
1 0

0 0:5
1 0

0 0:5

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: ð7Þ

The 12� 2 matrix multiplying K�1 is, according to equation

(1), the voltage matrix [�ðCiÞ] associated with the cycle–

co-cycle matrix K. For instance, the first row of K corresponds

to cycle (2,4) with net voltage 01; the last five rows of K

correspond to vectors from the co-cycle basis which are

mapped to the zero vector in barycentric representations. As

expected, the 12 edges of the quotient graph D are repre-

sented by only two vectors in R2: the edges with odd labels,

pre-images of the edge b of the base graph P, are represented

by (1; 0), and the edges with even labels, pre-images of the

edge a of P, are represented by (0; 1=2).

The representation of some edges of the net as vectors of

the unit cell implies the occurrence of collisions. For instance,

vertex Aij is linked to Biþ1j by an edge represented by the

vector (1; 0), meaning that the representative points satisfy

�ðBiþ1jÞ ¼ �ðAijÞ þ ð1; 0Þ ¼ �ðAiþ1jÞ. This observation extends

to every pair of vertices linked by edges that belong to the pre-

image of edge b in the base graph P, whence we obtain a

collision of all vertices in the net by triples:�
�ðAijÞ ¼ �ðBijÞ ¼ �ðCijÞ ¼ �ðA00Þ þ ði; jÞ ¼ ði; jÞ;
�ðDijÞ ¼ �ðEijÞ ¼ �ðFijÞ ¼ �ðD00Þ þ ði; jÞ ¼ ði; j� 1=2Þ:

ð8Þ

Notice that the barycentric representation of the net is the

square lattice, in agreement with the observation ending x3.

This can be seen from Fig. 5 by allowing the three vertices

inside every black circle to collapse into a single vertex and

thereafter substituting each generated set of multiple edges by

a single edge.

We now look for a complete description of the local auto-

morphism group L of the net. The first motivation is to check

that L acts freely on the net, in order to validate our

construction. But it is also instructive to determine a maximal

translation subgroup T � S and to analyse the automorphisms

of the respective labelled quotient graph N=T.

By construction, we know that H acts freely and

(vertex-) transitively on N=S. Since H also preserves the net

voltages on cycles of N=S, we can derive at least one local

automorphism sending vertex A00 to an arbitrary vertex Xij

ðX ¼ A;B; . . . FÞ of the net and respecting the vertex

lattices by S.

Observe now that, among all cycles in N=S, the 2-cycles with

voltage 01 and the 3-cycles with voltage 30 have the shortest

reduced length (see Eon, 2007). Hence, their pre-images in N

are strong geodesic lines. Through any vertex of the net there

runs exactly one strong geodesic parallel to 10 and one parallel

to 01. Moreover, the whole net is connected through these

geodesic lines: every edge of N belongs to some geodesic line

from one or the other family. (These properties permitted us

to represent the two families of geodesics as horizontal and

vertical lines, respectively, in Fig. 5, drawn with different

colours to distinguish crossing geodesics). Since local auto-

morphisms map strong geodesic lines to parallel strong

geodesic lines (Eon, 2007), it follows that there is a single

automorphism mapping A00 to Xij and thence that L acts

freely on N.

Let � and � denote the local automorphisms lifted from �12

and �123 which send A00 to its first neighbours D01 and B10,

respectively. With the help of Fig. 5, the definition of the two

automorphisms may be completed as follows:

� :

(Aij ! Dijþ1 ! Aijþ1

Bij ! Fijþ1 ! Bijþ1

Cij ! Eijþ1 ! Cijþ1

; ð9Þ

� :

�
Aij ! Biþ1j ! Ciþ2j ! Aiþ3j

Dij ! Fiþ1j ! Eiþ2j ! Diþ3j
: ð10Þ

The previous results showed that L acts freely and

(vertex-) transitively on the net. Hence, the quotient graph

N=L is well defined and is isomorphic to the bouquet B2. Of

course, � and � may be taken as the voltages in N=L of the

loops a and b, respectively (see Fig. 3). As a consequence, �
and � are two generators of L. It is worth noting that the

two automorphisms � and � act as translations along 01 and

10, respectively, on the barycentric representation of the net

(Fig. 5).

The fact that every automorphism in L is uniquely asso-

ciated with (i) an automorphism in H and (ii) a translation of

the barycentric embedding suggests inserting L into the direct

product S3 � Z
2 by using the following correspondence:
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Aij ! ½e; ði; 2jÞ�

Bij ! ½123; ði; 2jÞ�

Cij ! ½132; ði; 2jÞ�

Dij ! ½12; ði; 2j� 1Þ�

Eij ! ½23; ði; 2j� 1Þ�

Fij ! ½13; ði; 2j� 1Þ�:

8>>>>>><
>>>>>>:

ð11Þ

On the left-hand side, vertices Xij (X ¼ A;B; . . . F) in N have

been labelled as derived from N=S with voltage in Z2. On

the right-hand side appears the pair ðp; tÞ 2 S3 � Z
2 where

�p 2 H maps A to X and t 2 Z2 is the translation mapping

�ðA00Þ to �ðXijÞ in the barycentric embedding. Note the factor

2 in the second component of the translation coordinate which

takes into account the fractional coordinates in the barycentric

embedding. We obtain the desired insertion by noting that

each vertex of the net may be derived directly from B2 with

voltages in L, and labelled as U’ with single index ’ 2 L,

hence given on the right-hand side in the above display. In

particular, the translation group S of N is the subgroup

f½e; ði; 2jÞ� : ði; jÞ 2 Z2
g. As usual, the group operation in

S3 � Z
2 is defined by

ðp1; t1Þðp2; t2Þ ¼ ðp1p2; t1 þ t2Þ; ð12Þ

which is consistent with the action of L on the net given by

’1U’2
¼ U’1’2

[the two components p and t of ’ ¼ ðp; tÞ act

separately on N=S and on the barycentric embedding of N,

respectively]. L is clearly a non-trivial subgroup of S3 � Z
2. It

is in fact a subdirect product of S3 and Z2 (i.e. the projections

defined by the first and second coordinates p and t are sur-

jective mappings over S3 and Z
2, respectively). The two

generators of L may be identified as

� ¼ ½12; ð0; 1Þ�; � ¼ ½123; ð1; 0Þ�: ð13Þ

We look now for maximal extensions of S, that is: maximal

translation subgroups of the net. It is readily seen that �
extends S, yielding a free abelian subgroup T of L. Adding to S

any other automorphism with a transposition 12, 13 or 23 as

the first coordinate would also work. On the other hand, cyclic

permutations of order 3 cannot be used. Let us add, for

instance, [123; ði; 2jÞ] to S; then the extension also contains

’ ¼ ½123; ð0; 0Þ�, which verifies ’3 ¼ e, and so is not a free

group. This means that T itself cannot be extended by another

automorphism with a transposition 13 or 23 as its first coor-

dinate, since then it would also contain an automorphism with

the permutation 123 as the first coordinate. Hence, there are

exactly three isomorphic maximal extensions of S. Fig. 6 shows

the quotient graph N=T.

Before leaving this section, we stress that, although the

derived net is not a crystallographic net, there are no non-

trivial automorphisms of N=T that preserve the net voltage on

the cycles.

6. The graph B2 with voltages (1,2) and (1,3) in S3

Suppose now that the base graph P is the graph B2 with

voltages 12 and 13. The derived graph D is described in Fig. 7.

Using the same notations as in x5, the action of the two

generators �12 and �13 of H is given by the following permu-

tations of the elements xp (vertices or edges) of D:

�12 ¼ ðxe; x12Þðx13; x132Þðx123; x23Þ; ð14Þ

�13 ¼ ðxe; x13Þðx12; x123Þðx132; x23Þ: ð15Þ

Reasoning as above, it can be seen that there is a unique two-

dimensional net, up to isomorphism, admitting D as its

quotient graph and such that the action of �12 and �13 maps

cycles to cycles with the same net voltage. The corresponding

labelled quotient graph is shown in Fig. 8 and the derived net

in Fig. 9.

Again, it may be checked that the 12 edges of N=S are

represented by only two vectors in barycentric representa-

tions: the edges 1, 2, 5, 6, 9, 10 by (1; 1=2) and the edges 3, 4, 7,

8, 11, 12 by (0; 1=2) (see Fig. 8 for edge labels). It results that

the three vertex lattices A, C and E collide, as well as the three
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Figure 7
The base graph P of x6 and the derived graph D.

Figure 6
The quotient N/T of the net represented in Fig. 5, with vertex classes
½A� ¼ fA;Dg, ½B� ¼ fB;Eg and ½C� ¼ fC;Fg. Note that the translation
vector along 01 in T is half that in S in the same direction; translation
vectors along 10 are equal in both groups.



vertex lattices B, D and F. Again, the barycentric repre-

sentation of the net N is the square lattice, as may be seen in

Fig. 9 after allowing vertices inside the black circles to collide.

The different coordinates are as follows:�
�ðAijÞ ¼ �ðCijÞ ¼ �ðEijÞ ¼ �ðA00Þ þ ði; jÞ ¼ ði; jÞ;
�ðBijÞ ¼ �ðDijÞ ¼ �ðFijÞ ¼ �ðF00Þ þ ði; jÞ ¼ ði; jþ 1=2Þ:

ð16Þ

The pre-image of every 2-cycle of the quotient graph N=S is

again a strong geodesic line and, as above, it may be seen that

the local automorphism group L acts freely and transitively on

the net. Therefore, the quotient graph N=L is once again

isomorphic to the bouquet B2 and only two generators are

needed. We may also embed L in the direct product S3 � Z
2

with the following correspondence between a vertex in the net

and the pair of group elements mapping A00 to this vertex (as

above),

Aij ! ½e; ði; 2jÞ�

Bij ! ½12; ði; 2jþ 1Þ�

Cij ! ½132; ði; 2jÞ�

Dij ! ½23; ði; 2jþ 1Þ�

Eij ! ½123; ði; 2jÞ�

Fij ! ½13; ði; 2jþ 1Þ�:

8>>>>>><
>>>>>>:

ð17Þ

The two generators of L may now be identified as

� ¼ ½12; ð1; 1Þ�; � ¼ ½13; ð0; 1Þ�: ð18Þ

The translation group S of N is the same subgroup

f½e; ði; 2jÞ� : ði; jÞ 2 Z2
g. Again, three isomorphic extensions of

S are possible by adding any automorphism with a transpo-

sition as its first coordinate. The labelled quotient graph is

shown in Fig. 10, where it is apparent that there are no

automorphisms that preserve the voltage of the cycles in N=T.

The two nets represented in Figs. 5 and 9 appear to have so

many similarities that it is legitimate to ask whether they are

isomorphic. They are not, as shown by the analysis of linked

pairs of parallel strong geodesic lines. Consider two linked

parallel geodesic lines –A–B–C– and –D–E–F– in the first net,

drawn as orange lines in Fig. 5. They are only linked by edges

AD, that is: the induced (infinite) subgraph is a ladder with

two vertices of degree 2 between two rungs. There is no such

subgraph in the second net, where every linked pair of strong

geodesic lines shows one vertex of degree 2 alternating with a

rung. Notice that the argument on the net possesses a (less

clear) counterpart on the quotient graphs (N=S). The ladder in

the first net projects on the subgraph of the quotient graph in

Fig. 4 containing the two 3-cycles and the edge AD with label

4. Linked pairs of geodesics in the second net project on

2-cycles linked by a single edge.

7. The graph K
ð3Þ
2 with voltages e, (1,2) and (1,3) in S3

The bouquet with its two loops is a very particular case. Less

trivial is the example of the graph K
ð3Þ
2 with voltages 12 and 13

in S3. The derived graph D is displayed in Fig. 11 and a choice

of voltage assignment in Fig. 12.
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Figure 9
A pseudo-barycentric representation of the NC net derived from the
voltage graph given in Fig. 8. Vertices that collide in barycentric
representations of the net have been segregated within black circles and
form two classes: fA;C;Eg and fB;D;Fg.

Figure 10
The quotient N/T of the net represented in Fig. 9, with vertex classes
½A� ¼ fA;Bg, ½C� ¼ fC;Fg and ½D� ¼ fD;Eg. Note that the translation
vector along 01 in T is half that in S in the same direction; translation
vectors along 10 are equal in both groups.

Figure 8
The graph D of x6 with voltages in Z

2. Edge labels are given in
parentheses.



The pseudo-barycentric representation of the derived net is

drawn in Fig. 13. The barycentric representation of N is the

honeycomb, in agreement with the observation ending x3. We

may embed L in the direct product S3 � Z
2 with the following

correspondence:

Aij ! ½132; ði; 2jÞ�

Cij ! ½123; ði; 2jÞ�

Eij ! ½e; ði; 2jÞ�

Hij ! ½12; ði; 2j� 1Þ�

Jij ! ½13; ði; 2j� 1Þ�

Lij ! ½23; ði; 2j� 1Þ�:

8>>>>>><
>>>>>>:

ð19Þ

The two generators of L may now be identified as

� ¼ ½12; ð1; 1Þ�; � ¼ ½13; ð0; 1Þ�: ð20Þ

The translation group S of N is the same subgroup

f½e; ði; 2jÞ� : ði; jÞ 2 Z2
g. Again, three isomorphic extensions of

S are possible by adding any automorphism with a transpo-

sition as its first coordinate. The labelled quotient graph is

shown in Fig. 14, where it is apparent that there are no

automorphisms that preserve the voltage of the cycles in N=T.

Interestingly, the net that may be derived from K
ð3Þ
2 with

voltages e, 12 and 123 in S3 is isomorphic to the net we have

just described. In fact, the finite derived graph D is already

isomorphic to that described in Fig. 11, which may be seen as

follows. Let us use the same symbol for the elements of K
ð3Þ
2

with both voltage assignments, just adding primes for the

graph with voltages 12 and 123. It may be observed that right

multiplication by 12 of the voltages e, 12 and 13 of the first

assignment yields the voltages 12, e and 123 of the second

assignment, with exchange of the voltages of the first two

edges. This suggests defining a mapping � between the

respective derived graphs as follows:
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Figure 12
The graph D of x7 with voltages in Z2.

Figure 13
A pseudo-barycentric representation of the NC net derived from the
voltage graph given in Fig. 12. Vertices that collide in barycentric
representations of the net have been segregated within black circles and
form four classes: fA;C;Eg, fB;D; Fg, fG; I;Kg and fH; J;Lg.

Figure 11
The base graph P of x7 and the derived graph D.



� :

�
Up 7 �!U0p
Vp 7 �!V 0p:12

;

( ap 7 �! b0p
bp 7 �! a0p
cp 7 �! c0p

: ð21Þ

It is readily verified that � is a graph isomorphism.

8. Direct generation of NC nets

The procedure used above for indexing the elements of the

freely acting local automorphism group L may be extended for

directly generating n-periodic NC nets. Suppose � is an

automorphism in L mapping vertex A0, chosen as origin, to

vertex Bs; � may be written as ðp; tÞ 2 H � Zn, where p is the

permutation ofH mapping vertex A to vertex B in N=S, and t

is the translation mapping �ðA0Þ to �ðBsÞ in the barycentric

representation of the net. It is readily verified that the

mapping � 7! ðp; tÞ is a monomorphism (i.e. an injective group

homomorphism). We will show that, conversely, it is possible

to derive directly an NC net N by assigning voltages (hi; ti)

(i 2 I) fromH� Zn to the chords of a spanning tree in a finite

graph P. From Gross & Tucker (2001), we know that the group

G generated by the pairs (hi; ti) acts freely on the derived

infinite graph. (Assigning voltages to the chords of P ensures

that the whole group G, and not a subgroup, acts on the

derived graph.) If (i) all vertices have degree at least 3 in P and

(ii) different voltages are assigned to the edges in multiple

edges, the derived graph is a net. We will now show that this

net is a periodic net and that G is a subgroup of the local

automorphism group L of this net.

Proposition 8.1. Consider a finite graph P as above, with

voltage assignment in the direct product H� Zn, where H is

any non-abelian finite group. Then, the derived graph is an NC

n-periodic net on which the non-abelian group G, generated by

the voltages, acts freely. In general G is a subgroup of the local

automorphism group of the derived net.

Proof. To any relator r ¼
Q

k h
"k

�k
of H with �k 2 I and

"k 2 f�1; 1g (i.e. any string, or formal expression, of the hi’s

and their inverses whose product is actually equal to the

identity e of H and such that no sub-string is itself equal to e),

let us associate the translation sðrÞ ¼
P

k "kt�k
. Let S be the

subgroup of Z
n generated by the translations sðrÞ. By

construction, we have

Q
k

ðh�k
; t�k
Þ
"k ¼ ½e; sðrÞ�; ð22Þ

so that S may be identified with a translation subgroup of the

net. Clearly, S belongs to the centre of G. Since H is a finite

group, every element hi has finite order; hence S has finite

index in G, showing that the derived net is a periodic net. On

the other hand, the quotient N=S may also be derived from P

by considering as voltages the first coordinates hi instead of

the pairs (hi; ti). Voltages in S for the edges of N=S may be

obtained after lifting the closed walks with net voltage r in P:

these provide cycles of N=S with net voltage sðrÞ. Now, because

an arbitrary automorphism ðh; tÞ 2 G commutes with S, it is

associated with an automorphism of N=S: this automorphism

is given by the action of the first coordinate h on this graph.

Since N=S is derived from P with voltages in H, any cycle of

N=S and its image by h project on the same closed walk in P,

and so have the same net voltage in S. This shows that ðh; tÞ is a

local automorphism of N. If h has order w in H, we have

ðh; tÞ
w
¼ ðe;wtÞ ¼ ðe; sÞ 2 S; hence (h; t) acts as the transla-

tion t ¼ s=w on the barycentric representation of the net. &

According to Proposition 8.1 we may produce an NC net

with a non-abelian, freely acting local automorphism group

from any crystallographic net by simply adding the first

permutation coordinate to the voltages in Zn of its labelled

quotient graph. Both nets, the crystallographic one and the

derived NC net, admit the same barycentric representation.
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Figure 14
The quotient N/T of the net represented in Fig. 13, with vertex classes
½A� ¼ fA; Jg, ½B� ¼ fB;Kg, ½C� ¼ fC;Lg, ½D� ¼ fD;Gg, ½E� ¼ fH;Eg and
½I� ¼ fI;Fg. Note that the translation vector along 01 in T is half that in S
in the same direction; translation vectors along 10 are equal in both
groups.

Figure 15
The graph K

ð4Þ
2 with voltages in S3 � Z

3 and a pseudo-barycentric
(diamond-like) representation of the derived net.



Fig. 15 for instance shows the NC net derived from the

diamond net by inserting voltages 12 and 13 from the substi-

tution group S3 as first coordinates for two of the four edges of

K
ð4Þ
2 . The remaining edges were assigned the identity of S3 as

the first coordinate. This group was chosen for the sake of

clarity since the number of colliding points is determined by

the order and the structure of the permutation group.

We finally observe that no limitation exists to the order of

the permutation group. Since Sn can be generated from only

two permutations, say a and b, two edges in a graph with

voltages (a; s) and (b; t) in Sn � Z
p are enough to produce an

NC net with a local automorphism group that is a subdirect

product of Sn � Z
p (it being assumed that p-periodicity is

provided by the whole set of second coordinates). Thus, for

any integer n, we may assign the two voltages ½12; ð10Þ� and

½12 . . . n; ð01Þ� in Sn � Z
2 to the loops of B2 and derive a

labelled quotient graph with n! vertices and 2� n! edges, since

12 and 12 . . . n generate the whole group Sn. Fig. 16 displays

the labelled quotient graph derived from the bouquet B2 with

voltages [12,(10)] and [1234,(01)] in S4 � Z
2. Colliding points

in the barycentric representation are given by applying auto-

morphisms of the form (h; 0) (h 6¼ e), with the zero vector as

the second coordinate, since these are non-trivial local auto-

morphisms of the net associated with the null translation of its

barycentric representation. When independent vectors define

the second coordinate of the voltages in Sn � Z
p, it is readily

verified that collisions are associated with permutations h

in the commutator subgroup ½Sn;Sn� ¼ An, the alternating

subgroup (Kargapolov & Merzljakov, 1979) with jAnj ¼ n!=2.

This observation justifies the occurrence of triple collisions in

the diamond-like NC net, and shows that we should expect 12

colliding points in the barycentric representation of the net

derived from B2 with voltages in S4 � Z
2.

9. Final considerations

According to the previous results, there are infinitely many

NC nets of any periodicity with a freely acting non-abelian

local automorphism group. The above construction shows that

the quotient graph N=T of every such net N with respect to a

maximal translation group T has no automorphisms that

preserve the net voltages over its cycles, which may make the

direct identification of an NC net from its labelled quotient

graph less easy. From the above examples, it is apparent that

such nets should be quite commonly generated in a systematic

search for new nets from their labelled quotient graph. Indeed,

the three quotient graphs given in Figs. 6, 10 and 14 have been

listed by Beukemann & Klee (1992) as the quotient graphs

3ð4Þ2, 3ð4Þ4 and 6ð3Þ5 of 4-periodic minimal nets. It is thus of

importance to examine available tools for recognizing such

nets from their labelled quotient graph. Fortunately, we know

from x3 that barycentric representations of these nets always

display collisions. This is not a sufficient criterion, however, for

some crystallographic nets are known to be unstable. Further

progress can be made by the analysis of geodesic fibres.

Let us consider the case of the labelled quotient graph given

in Fig. 6 from this point of view. To begin with, it is easily

verified that the barycentric representation has collisions.

Inspection of the quotient N=T reveals the existence of a

single strong geodesic line projecting on the triangle ABC with

net voltage 30 and two strong geodesic lines parallel to

direction 01, projecting, respectively, on the loop at vertex A

and on the 2-cycle BC with net voltage 02. Since geodesic lines

are mapped on parallel geodesic lines by any local auto-

morphism, we ought to discover whether these two different

lines along 01 are equivalent in the net. Now, such an

equivalence cannot be shown by analysing the quotient unless

both lines project on cycles with equal lengths. So we are led to

double the unit cell in this direction. Duplication yields here

the quotient shown in Fig. 4, which as we have seen generates

an NC net.

More generally, expanded cells should be used in order to

enable the comparison of geodesic fibres in every direction. If

the net admits a freely acting, non-trivial local automorphism

group, be it abelian or not, there should be an automorphism

of the expanded quotient graph that preserves the net voltage

over equivalent cycles.

Finally, we observe that the results exposed here also apply

to nets admitting local automorphisms with fixed elements. It

should only be true that the full local automorphism group

admits a non-trivial subgroup (i.e. a subgroup that is not

isomorphic to a free abelian subgroup) which acts freely on

the net.

J.-G. Eon thanks CNPq, Conselho Nacional de Desenvol-

vimento e Pesquisa of Brazil, for support during the

preparation of this work.
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Figure 16
The labelled quotient graph of the NC net obtained by assigning voltages
[12,(10)] and [1234,(01)] in S4 � Z

2 to the loops of the bouquet B2.
Vertices are labelled by permutations in S4. For the sake of clarity, edges
are coloured according to their voltages in Z2. Note that the unit cell of
the barycentric representation is centred in relation to the primitive cell
of the net.
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